Chapter 3

Scattering data from process O to processes 1, 2, 3, 4

The comm. scatter function takes the elements of the array and distributes them to the
processes according to their rank, for which the first element will be sent to the process zero,
the second element to the process 1, and so on. The function implemented in mpi4py is as
follows:

recvbuf = comm.scatter (sendbuf, rank of root process)

How to do it...

In the next example, we see how to distribute data to different processes using the scatter
functionality:

from mpi4py import MPI

comm = MPI.COMM_ WORLD
rank = comm.Get rank ()

if rank == O0:
array to share = [1, 2, 3, 4 ,5 ,6 ,7, 8 ,9 ,10]

else:
array to_share = None

recvbuf = comm.scatter (array to share, root=0)
print ("process = %d" %rank + " recvbuf = %d " %array to_ share)

Process-based Parallelism
The output of the preceding code is, as follows:

C:\>mpiexec -n 10 python scatter.py

process = 0 variable shared =1
process = 4 variable shared = 5
process = 6 variable shared = 7
process = 2 variable shared = 3
process = 5 variable shared = 6
process = 3 variable shared = 4
process = 7 variable shared = 8
process = 1 variable shared = 2
process = 8 variable shared = 9
process = 9 variable shared = 10

The process of rank zero distributes the array to_share data structure to other processes:
array to_share = [1, 2, 3, 4 ,5 ,6 ,7, 8 ,9 ,10]

The recvbuf parameter indicates the value of the ith variable that will be sent to the ith
process through the comm. scatter statement:

recvbuf = comm.scatter (array to share, root=0)

We also remark that one of the restrictions to comm. scatter is that you can scatter as many
elements as the processors you specify in the execution statement. In fact attempting
to scatter more elements than the processors specified (three in this example), you will get
an error like this:
C:\> mpiexec -n 3 python scatter.py
Traceback (most recent call last):

File "scatter.py", line 13, in <module>

recvbuf = comm.scatter (array to share, root=0)

File "Comm.pyx", line 874, in mpi4py.MPI.Comm.scatter (c:\users\utente\
appdata

Chapter 3

\local\temp\pip-build-hl4iaj\mpid4py\src\mpidpy.MPI.c:73400)

File "pickled.pxi", line 658, in mpi4py.MPI.PyMPI scatter (c:\users\
utente\app

datallocal\temp\pip-build-hl4iaj\mpid4py\src\mpidpy.MPI.c:34035)

File "pickled.pxi", line 129, in mpi4py.MPI. p Pickle.dumpv (c:\users\
utente\a

ppdatal\local\temp\pip-build-hl4iaj\mpi4py\src\mpid4py.MPI.c:28325)
ValueError: expecting 3 items, got 10

mpiexec aborting job...

job aborted:

rank: node: exit code[: error message]
0: Utente-PC: 123: mpiexec aborting job
1l: Utente-PC: 123

2: Utente-PC: 123

There's more...

The mpi4py library provides two other functions that are used to scatter data:

» comm.scatter (sendbuf, recvbuf, root=0): This sends data from one
process to all other processes in a communicator.

» comm.scatterv(sendbuf, recvbuf, root=0): This scatters data from one
process to all other processes in a group that provides different amount of data and
displacements at the sending side.

The sendbuf and recvbuf arguments must be given in terms of a list (as in, the point-to-
point function comm. send):

buf = [data, data size, data typel]

Here, data must be a buffer-like object of the size data_size and of the type data_type.

Process-based Parallelism

Collective communication using gather

The gather function performs the inverse of the scatter functionality. In this case, all
processes send data to a root process that collects the data received. The gather function
implemented in mpi4py is, as follows:

recvbuf = comm.gather (sendbuf, rank of root process)

Here, sendbuf is the data that is sent and rank of root process represents the process
receiver of all the data:

O O OO

Gathering data from processes 1, 2, 3, 4

How to do it...

In the following example, we wanted to represent just the condition shown in the preceding
figure. Each process builds its own data that is to be sent to the root processes that are
identified with the rank zero:

from mpi4py import MPI

comm = MPI.COMM_ WORLD
size = comm.Get size()
rank = comm.Get rank ()
data = (rank+1)**2

Chapter 3

data = comm.gather (data, root=0)
if rank == 0:
print ("rank = %s " %rank +\
"...receiving data to other process")
for i in range(l,size):
datal[i]l = (i+1)**2
value = datal[i]
print (" process %s receiving %s from process %$s"\
% (rank , value , 1))

Finally, we run the code with a group of processes equal to five:

C:\>mpiexec -n 5 python gather.py

rank = 0 ...receiving data to other process
process 0 receiving 4 from process 1
process 0 receiving 9 from process 2
process 0 receiving 16 from process 3
process 0 receiving 25 from process 4

The root process zero receives data from the other four processes, as we represented in the
previous figure.

We have n processes sending their data:
data = (rank+1l)**2
If the rank of the process is zero, then the data is collected in an array:

if rank == 0:
for i in range(l,size):
datal[i]l = (i+1)**2
value = datal[i]

The gathering of data is given instead by the following function:

data = comm.gather (data, root=0)

Process-based Parallelism

There's more...

To collect data, mpi4py provides the following functions:

» gathering to one task: comm.Gather, comm.Gatherv, and comm.gather

» gathering to all tasks: comm.Allgather, comm.Allgatherv, and comm.
allgather

Collective communication using Alltoall

The Alltoall collective communication combines the scatter and gather functionality.
In mpi4py, there are three types of Al1toall collective communication:

» comm .Alltoall (sendbuf, recvbuf): The all-to-all scatter/gather sends data
from all-to-all processes in a group

» comm.Alltoallv(sendbuf, recvbuf): The all-to-all scatter/gather vector sends
data from all-to-all processes in a group, providing different amount of data and
displacements

» comm.Alltoallw(sendbuf, recvbuf): Generalized all-to-all communication
allows different counts, displacements, and datatypes for each partner

How to do it...

In the following example, we'll see a mpi4py implementation of comm.Alltoall. We
consider a communicator group of processes, where each process sends and receives an
array of numerical data from the other processes defined in the group:

from mpi4py import MPI
import numpy

comm = MPI.COMM WORLD
size = comm.Get size()
rank = comm.Get rank ()

a size =1
senddata

(rank+1) *numpy.arange (size,dtype=int)
recvdata = numpy.empty(size*a size,dtype=int)
comm.Alltoall (senddata, recvdata)

print (" process %s sending %s receiving %s"
% (rank , senddata , recvdata))

Chapter 3

We run the code with a communicator group of five processes and the output we get is as

follows:

C:\>mpiexec -n 5 python alltoall.py

process 0 sending [0 1 2 3 4] receiving [0 0 0 O O]
process 1 sending [0 2 4 6 8] receiving [1 2 3 4 5]
process 2 sending [0 3 6 9 12] receiving [2 4 6 8 10]
process 3 sending [0 4 8 12 16] receiving [3 6 9 12 15]
process 4 sending [0 5 10 15 20] receiving [4 8 12 16 20]

The comm.alltoall method takes the ith object from sendbuf of the task j and copies it
into the jth object of the recvbuf argument of the task i.

We could also figure out what happened using the following schema:

P, o 1 2 3 4 O O O O o©
P, | O 2 4 6 8 1 2 3 4 5
P Alltotall

., 0 3 6 9 12 » 2 4 6 8 10
P, |0 4 8 12 16 3 6 9 12 15
P, | 0 5 10 15 20 4 8 12 16 20

The Alltoall collective communication

The following are our observations regarding the schema:

>

The process PO contains the data array [0 1 2 3 4], where it assigns 0 to itself, 1 to
the process P1, 2 to the process P2, 3 to the process P3, and 4 to the process P4.

The process P1 contains the data array [0 2 4 6 8], where it assigns 0 to PO, 2 to
itself, 4 to the process P2, 6 to the process P3, and 8 to the process P4.

The process P2 contains the data array [0 3 6 9 12], where it assigns 0 to PO, 3 to
the process P1, 6 to itself, 9 to the process P3, and 12 to the process P4.

The process P3 contains the data array [0 4 8 12 16], where it assigns 0 to PO, 4 to
the process P1, 8 to the process P2, 12 to itself, and 16 to the process P4.

The process P4 contains the data array [0 5 10 15 20], where it assigns 0 to PO, 5 to
the process P1, 10 to the process P2, 15 to the process, and P3 and 20 to itself.

Process-based Parallelism

There's more...

All-to-all personalized communication is also known as total exchange. This operation is
used in a variety of parallel algorithms, such as the Fast Fourier transform, matrix transpose,
sample sort, and some parallel database join operations.

The reduction operation

Similar to comm.gather, comm. reduce takes an array of input elements in each process
and returns an array of output elements to the root process. The output elements contain the
reduced result.

In mpi4py, we define the reduction operation through the following statement:

comm.Reduce (sendbuf, recvbuf, rank of root process, op = type of
reduction operation)

We must note that the difference with the comm.gather statement resides in the op
parameter, which is the operation that you wish to apply to your data, and the mpi4py module
contains a set of reduction operations that can be used. Some of the reduction operations
defined by MPI are:

» MPI.MAX: This returns the maximum element

» MPI.MIN: This returns the minimum element

» MPI.SUM: This sums up the elements

» MPI.PROD: This multiplies all elements

» MPI.LAND: This performs a logical operation and across the elements

» MPI.MAXLOC: This returns the maximum value and the rank of the process
that owns it

» MPI.MINLOC: This returns the minimum value and the rank of the process
that owns it

How to do it...

Now, we'll see how to implement a sum of an array of elements with the reduction operation
MP1I.SUM, using the reduction functionality. Each process will manipulate an array of size
three. For array manipulation, we used the functions provided by the numpy Python module:

import numpy

import numpy as np
from mpi4py import MPI
comm = MPI.COMM WORLD

Chapter 3

size comm.size

rank = comm.rank

array size = 3
recvdata = numpy.zeros (array size,dtype=numpy.int)

senddata = (rank+1l)*numpy.arange (a_size,dtype=numpy.int)
print (" process %s sending %s " % (rank , senddata))

comm.Reduce (senddata, recvdata, root=0, op=MPI.SUM)

print ('on task',6 rank, 'after Reduce: data = ',recvdata)

It makes sense to run the code with a communicator group of three processes, that is, the

size of the manipulated array. Finally, we obtain the result as:

C:\>mpiexec -n 3 python reduction2.py
process 2 sending [0 3 6]

on task 2 after Reduce: data = [0 0 0]
process 1 sending [0 2 4]
on task 1 after Reduce: data = [0 0 0]

process 0 sending [0 1 2]

on task 0 after Reduce: data = [0 6 12]

To perform the reduction sum, we use the comm.Reduce statement and also identify with
rank zero, the root process, which will contain recvbuf, that represents the final result of the

computation:

comm.Reduce (senddata, recvdata, root=0, op=MPI.SUM)

Also, we must note that with the op=MP1I . SUM option, we apply the sum operation to all of the
elements of the column array. To better understand how the reduction operates, let's take a

look at the following figure:

sendbuf reduction

MPI.SUM
recvbuf

mmm)p 0 6

The reduction collective communication

Process-based Parallelism

The sending operation is as follows:

» The process PO sends the data array [0 1 2]
» The process P1 sends the data array [0 2 4]
» The process P2 sends the data array [0 3 6]

The reduction operation sums the ith elements of each task and then puts the result in the ith
element of the array in the root process PO.

For the receiving operation, the process PO receives the data array [0 6 12].

How to optimize communication

An interesting feature that is provided by MPI concerns the virtual topologies. As already
noted, all the communication functions (point-to-point or collective) refer to a group of
processes. We have always used the MPI_COMM_WORLD group that includes all processes.

It assigns a rank 0 to n-1 for each process that belongs to a communicator of the size n.
However, MPI allows us to assign a virtual topology to a communicator. It defines a particular
assignment of labels to the different processes. A mechanism of this type permits you to
increase the execution performance. In fact, if you build a virtual topology, then every node
will communicate only with its virtual neighbor, optimizing the performance.

For example, if the rank was randomly assigned, a message could be forced to pass to many
other nodes before it reaches the destination. Beyond the question of performance, a virtual
topology makes sure that the code is more clear and readable. MPI provides two building
topologies. The first construct creates Cartesian topologies, while the latter creates any kind of
topologies. Specifically, in the second case, we must supply the adjacency matrix of the graph
that you want to build. We will deal only with Cartesian topologies, through which it is possible
to build several structures that are widely used: mesh, ring, toroid, and so on. The function
used to create a Cartesian topology is, as follows:

comm.Create cart ((number of rows,number of columns))

Here, number of rows and number of columns specify the rows and columns of the grid
that is to be made.

How to do it...

In the following example, we see how to implement a Cartesian topology of the size MxN. Also,
we define a set of coordinates to better understand how all the processes are disposed:

from mpi4py import MPI
import numpy as np

120

Chapter 3

UP = 0
DOWN =
LEFT = 2
RIGHT = 3
neighbour processes = [0,0,0,0]
if name == " main ":
comm = MPI.COMM_ WORLD
rank = comm.rank
size = comm.size
grid rows = int (np.floor (np.sqgrt (comm.size)))
grid column = comm.size // grid rows
if grid rows*grid column > size:
grid column -= 1
if grid rows*grid column > size:
grid rows -= 1
if (rank == 0)
print ("Building a %d x %d grid topology:"\
% (grid rows, grid column))
cartesian communicator = \
comm.Create_cart(\
(grid_rows, grid column), \
periods=(True, True), reorder=True)
my mpi row, my mpi col = \
cartesian communicator.Get coords\
(cartesian communicator.rank)
neighbour processes [UP], neighbour processes [DOWN] \
= cartesian communicator.Shift (0, 1)
neighbour processes [LEFT], \
neighbour processes[RIGHT] = \
cartesian communicator.Shift (1, 1)
print ("Process = %s \
row = %s \
column = %s ----> neighbour processes[UP] = %s \
neighbour processes [DOWN] = %s \
neighbour processes [LEFT] =%s neighbour processes[RIGHT]=%s" \

% (rank, my mpi row, \
my mpi_ col,neighbour processes[UP], \

Process-based Parallelism

neighbour processes [DOWN], \
neighbour processes[LEFT] , \
neighbour processes [RIGHT]))

By running the script, we obtain the following result:

C:\>mpiexec -n 4 python virtualTopology.py
Building a 2 x 2 grid topology:

Process = 0 row = 0 column = 0 ---->
neighbour processes[UP] = -1

neighbour processes[DOWN] = 2

neighbour processes[LEFT] =-1

neighbour processes[RIGHT]=1

Process = 1 row = 0 column = 1 ---->

neighbour processes[UP] = -1

1]
w

neighbour processes [DOWN]

]
o

neighbour processes|[LEFT]

]
1
R

neighbour processes[RIGHT]

Process = 2 row = 1 column = 0 ---->
neighbour processes[UP] = 0
neighbour processes[DOWN] = -1
neighbour processes[LEFT] =-1

neighbour processes[RIGHT]=3

Process = 3 row = 1 column = 1 ---->
neighbour processes[UP] = 1
neighbour processes[DOWN] = -1

neighbour processes[LEFT] =2
neighbour processes[RIGHT]=-1
For each process, the output should read as: if neighbour processes = -1,thenithas

no topological proximity; otherwise, neighbour processes shows the rank of the process
closely.

122

Chapter 3

The resulting topology is a mesh of 2x2 (refer to the previous figure for a mesh
representation), the size of which is equal to the number of processes in the input,
that is, four:

grid rows = int (np.floor (np.sqgrt (comm.size)))
grid column = comm.size // grid rows
if grid rows*grid column > size:
grid column -= 1
if grid rows*grid column > size:
grid rows -= 1

Then, the Cartesian topology is built:

cartesian communicator = comm.Create cart(\
(grid rows, grid column), periods=(False, False), reorder=True)

To find out the position of the ith process, we use the Get _coords () method in the following
form:

my mpi row, my mpi col = cartesian communicator.Get coords(cartesian
communicator.rank)

For each process, in addition to their coordinates, we calculated

and got to know which processes are topologically closer. For

this purpose, we used the comm.Shift function comm.Shift (rank
source, rank dest)

In this form we have:

neighbour processes[UP], neighbour processes[DOWN] = \ cartesian
communicator.Shift (0, 1)

neighbour processes[LEFT], neighbour processes[RIGHT] = \ cartesian_
communicator.Shift (1, 1)

Process-based Parallelism

The obtained topology is shown in the following figure:

The virtual mesh 2x2 topology

There's more...

To obtain a toroidal topology of the size MxN, we need the following lines of code:

cartesian_communicator = comm.Create_cart((grid rows, grid_column),
periods=(True, True), reorder=True)

This corresponds to the following output:

C:\>mpiexec -n 4 python VirtualTopology.py
Building a 2 x 2 grid topology:
Process = 0 row = 0 column = 0 ---->
neighbour processes [UP] = 2
neighbour processes [DOWN] = 2
neighbour processes [LEFT] =1
neighbour processes [RIGHT]=1

Process = 1 row = 0 column = 1 ---->
neighbour processes [UP] = 3
neighbour processes [DOWN] = 3
neighbour processes [LEFT] =0
neighbour processes [RIGHT] =0

Process = 2 row = 1 column = 0 ---->
neighbour processes[UP] = 0
neighbour processes [DOWN] = 0
neighbour processes [LEFT] =3 neighbour processes[RIGHT] =3
Process = 3 row = 1 column = 1 ---->
neighbour processes[UP] = 1
neighbour processes [DOWN] = 1
neighbour processes [LEFT] =2
neighbour processes [RIGHT] =2

Also, it covers the topology represented here:

The virtual toroidal 2x2 topology

Chapter 3

